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Abstract. The hysteresis of an array of interacting single domain magnetic particles is studied, where the
particles interact via exchange and dipolar interactions. The dependence of the magnetic properties on the
distribution of grain sizes, the density of the grains, the anisotropy energy and the exchange interactions
in the array is investigated through Monte Carlo simulations for γ − Fe2O3 nanoparticle systems. We also
present some experimental results on the γ − Fe2O3-polypyrrole nanocomposite system which agree with
the trends observed in our simulations.

PACS. 75.75.+a Magnetic properties of nanostructures – 75.50.Lk Spin glasses and other random magnets
– 75.40.Mg Numerical simulation studies – 75.50.Tt Fine-particle systems; nanocrystalline materials

1 Introduction

The magnetic properties of ultra fine and nanosized mag-
netic particles show significant variations from their bulk
values. This has led to considerable interest on both the
technological and fundamental level. On the technological
front, these materials are used in magnetic recording me-
dia, ferrofluids and as catalysts etc. [1]. Their fine struc-
ture also exhibits electron interference, oscillatory mag-
netic coupling, superparamagnetism and low dimensional
magnetism [2]. From the point of view of industrial ap-
plication it is essential to obtain single domain magnetic
fine particle arrays with negligible size distribution of the
particles, which are well separated and non-interacting.
However the standard techniques of synthesis results in
clustering, a non-negligible size distribution, as well a vari-
ation in shape of the particles. Recent experiments show
that most of the magnetic properties, namely the magne-
tization, coercivity and Curie temperature of these mag-
netic systems are very sensitive to the above mentioned
parameters [3].

A general description of the magnetization of fine mag-
netic particles is based on the theory of superparamag-
netism, in which it is assumed that the magnetic particle
is actually a single domain entity in which the atomic
magnetic moments rotate coherently, such that the mag-
netization of the particle may be represented by a sin-
gle magnetization vector with a large magnitude. The im-
portant feature of the system is its anisotropy. Uniaxial
anisotropy, as often seen in transition metal oxides, leads
to two equivalent magnetization states on each particle.
The relevant time scale in the system is the relaxation
time, which is the time taken to reverse the magnetiza-
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tion of the particle from one equilibrium magnetization
state to the other. The relaxation time τ depends on the
anisotropy constant K and the volume V of the particle
as τ−1 ∝ e−KV/kBT where T is the temperature of the
system. The magnetic behavior observed in the system at
different temperatures however depends both on the ex-
perimental time scale tS for the observation being done
and the relaxation time τ . For those temperatures where
τ > tS , the system appears like a ferromagnet and for
temperatures at which τ < tS the system appears super-
paramagnetic. The blocking temperature is determined by
τ = tS and separates the two regimes.

The magnitude of the magnetization on a single do-
main magnetic nanoparticle is in itself a complicated prob-
lem which depends explicitly on the size and shape of the
particle and several studies of the magnetization prop-
erties of single domain particle are available in litera-
ture [4–7] which are based either on micromagnetic model-
ing or Monte Carlo simulations. From these simulations as
well it is established that the magnetic properties of mono
domain magnetic particles are strongly influenced by fi-
nite size and surface effects, these effects becoming more
important as the size of the particles becomes smaller.

For an array of single domain magnetic nanoparticles
numerical studies are further complicated by the inherent
disorder in the sample, as well as the interparticle interac-
tions. The disorder in the system may be classified as (i)
the spatial disorder in the actual positions of the grains
in the array and (ii) the possible randomness in the orien-
tation of the easy axes of the different particles, depend-
ing on the shape and size of the particles. The relevant
interactions are primarily the long range dipolar interac-
tions, and since in magnetic nanomaterials the particles
shows a strong tendency to agglomerate one has to include
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the short range exchange interactions. Numerical studies
of the magnetic properties of single domain magnetic ar-
rays are based either on Langevin Dynamics or Monte
Carlo methods. Using these methods hysteresis, magneti-
zation and magnetic susceptibility are calculated and sim-
ulated [8–13] to study magnetization reversal and blocking
temperatures. Most simulations in these systems however
include only the randomness in the localized magnetic mo-
ment, and the spatial disorder is ignored. Garcia-Oterro
et al. have reported the field cooled and zero field cooled
susceptibility for a system of single domain ultrafine fer-
romagnetic particles using Monte Carlo simulations [13].
However their simulation neglects the effect of exchange
interactions.

γ − Fe2O3 which is ferrimagnetic is an important ma-
terial for magnetic storage. Several investigations of these
materials both in its pure form and fine γ − Fe2O3 em-
bedded in a host matrix has been investigated in some
detail using Mossbauer, ac-dc susceptibility, etc. [14–17].
Morup and Tronc have investigated superparamagnetic re-
laxation in weakly interacting γ − Fe2O3 system [20]. In
this paper we report the results of our simulations for a
model system in which we incorporate disorder (due to
shape and size distribution of the particles and their ran-
dom positions in the array) and exchange interactions,
using the parameters for a γ − Fe2O3 system. To our
knowledge this is the first systematic numerical investiga-
tion in which the effects of disorder, short range exchange,
long range dipolar and anisotropy effects have been stud-
ied simultaneously. We also present some ac susceptibility
results performed on γ −Fe2O3-polypyrrole nanocompos-
ites [14,18,19], to elucidate the role of interactions in these
type of systems.

In Section 2 we discuss the model Hamiltonian used
for the simulation, in Section 3 we describe the details of
the simulation, in Section 4 we present our results and
discussions and in Section 5 we present our conclusions.

2 Model

The model Hamiltonian for a system of interacting single
domain magnetic particles [8–13,21], each having a mag-
netic moment vector �µi is written as

H = −K
∑

i

Vi
(�µi · �ni)2

|�µi|2 −
∑
〈i�=j〉

Jij�µi · �µj

− µ0

∑
〈i�=j〉

3(�µi · �eij)(�µj · �eij) − �µi · �µj

r3
ij

− µ0

∑
j

�H · �µj (1)

where the first term is the anisotropy energy, with K as
the anisotropy constant. The anisotropy energy associated
with each particle depends on the volume of the particle
Vi and the angle between its magnetic moment vector �µi

and �ni is the unit vector along the easy axis direction
of the particle. The second term is the exchange energy,

Jij is the ferromagnetic exchange interaction between two
particles with localized magnetic moment vectors �µi and
�µj respectively, which for the purpose of simulation is as-
sumed to have a site independent constant value J . The
third term is the dipolar interaction between the i and jth
particles, with rij as the distance between the particles.
�eij is the unit vector pointing along rij . The last term is
the energy of the particles due to an externally applied
magnetic field of magnitude H . It is assumed that the
magnetic moment vector for a single particle has a tem-
perature independent constant value �µi = ViMS�σi where
MS is the saturation magnetization of the particle and
�σi with coordinates (σx

i , σy
i , σz

i ) is the unit vector along
the direction of magnetization vector. Several estimates
of the actual value of MS and the anisotropy constant K
for a variety of nanomagnetic materials are to be found
in literature [22]. It is also possible to make a reasonable
estimate of the average size as well as the shape and size
variation of the particles in an actual sample from various
characterization methods like TEM, SEM etc. However
there seem to be no definite estimates for the exchange
interaction parameter J .

Disorder is manifested in the system in the following
ways (a) the single domain grains have a random distri-
bution of shape and size and (b) the magnetic grains are
positioned randomly in the array. Because of the shape
and size anisotropy in the sample there is a random dis-
tribution of the magnitude and direction of the localized
magnetic moment and also in the direction of the easy
axis of magnetization on the different particles in the sam-
ple. The positional disorder and the particle concentration
in the sample affects the dipolar interaction between two
magnetic particles which depends explicitly on the dis-
tance between the particles.

3 Details of simulation

We work with a basic simulation cell which is a cube of
side 4L. The cube contains N magnetic particles, the i
th particle having a volume Vi (equivalent to a sphere of
radius ri) and L is the lattice spacing. The minimum al-
lowed distance between any two particles in the array is
rmin ∼ αL, where α can assume a value between 0 to 1.
For the following simulation we have set α = 0.5. The
center of the ith particle has the coordinates xi, yi and zi,
where each of the coordinates is a random number be-
tween βL and L where β is a very small cutoff � 0.001.
The distance between any two sites i and j in the array is
rij = (x2

ij + y2
ij + z2

ij)
1/2. The coordinates of the magne-

tization direction vector for each particle i.e. (σx
i , σy

i , σz
i ),

are picked randomly with (σx
i

2+σy
i
2+σz

i
2) = 1. If the sys-

tems are polydisperse the volumes of the particles in the
array are picked from a Gaussian distribution of width t
which is defined by

P (V )dV =
1

(2πt)1/2
exp

(
− (V − V0)2

2t2

)
(2)

where V0 is the mean volume of the particles. The coordi-
nates of the easy axis �ni for each particle (nx

i , ny
i , n

z
i ) are
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also chosen randomly. The easy axes, site positions, mag-
nitude of the magnetic moment at each site |�µi| and the
volumes of the particles are kept constant for the entire
simulation. The effect of disorder, size and shape distribu-
tion is assumed to be encapsulated in this random distri-
bution of the positions, volume, magnetization direction
and easy axes of the particles in the sample. It is well-
known that for realistic simulation of the nanomagnetic
system the calculation of the dipole dipole interaction en-
ergy of the sample is computationally expensive since the
interaction is of a long range nature. According to current
belief the best results for the dipole interaction energy are
obtained by summing the energy between each pair of par-
ticles over periodic repeats of the basic simulation cell. We
perform the summation over units cells using a variation
of the Lekner summation method developed for electrical
dipole energies which we find convenient for a positionally
disordered array of particles [23].

We study the hysteresis curves for this sample by
the Monte Carlo simulation technique using the standard
Metropolis algorithm [24]. For each hysteresis curve the
temperature, anisotropy energy, exchange interaction and
the volume are kept fixed. The simulation is started at a
very low field along the z-axis of the simulation cube, using
an ensemble of magnetization vectors for the array, which
gives net magnetization zero along the z-direction. The
system is saturated by gradually increasing the magnetic
field up to a very high field which is sufficiently higher
than its anisotropy field. Then the magnetic hysteresis
loop is simulated. For each value of the magnetic field
10000 Monte Carlo steps are used for the thermalization
of the system and the calculation of the net magnetiza-
tion along the field direction is made over the next 10000
Monte Carlo steps. A single Monte Carlo step is one in
which an attempt is made to change the orientation of
the magnetization vector on each site of the basic simula-
tion cell. A change in the orientation of the magnetization
vector on the site i from σi to σ′

i is done in the following
fashion,

σ′
i
x =

σx
i ± δx · ∆√{σx

i
2 + σy

i
2 + σz

i
2}

σ′
i
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i
2 + σy

i
2 + σz

i
2}

σ′
i
z =

σz
i ± δz · ∆√{σx

i
2 + σy

i
2 + σz

i
2}

. (3)

For this attempt to change the direction of the magnetic
moment on the ith particle the energy required is given by,

∆Ei = −KVi

[
(�µ′
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i|2
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]
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∑
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r3
ij

− 3((�µ′
i − �µi).�eij)(�µj · �eij)
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]
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Fig. 1. The simulated hysteresis loops for K = 0.046 ×
105 J/m3, Jeff = 0.1EA and uniform particle volume equiva-
lent to a sphere of diameter 10 nm at a temperature of 5 K for
increasing iron oxide particle concentration from (a–d), where
(d) is the most concentrated system.

where �µ′
i = MSVi�σ

′
i. The sum over the nearest neigh-

bors nn involves a summation over all sites within unit
distance from i. The move is accepted with a probabil-
ity exp(−βEi) for ∆Ei > 0 and 1 for ∆Ei < 0 where
β = 1/kBT . δx, δy and δz are picked randomly but it
is important to choose ∆ such that the acceptance rate
of our moves remains the same at all fields to ensure a
constant rate of motion through the phase space [10,12].
Our results are averaged over 10000 MC steps, five dif-
ferent initial spin configurations and five different posi-
tional configurations. In the following section we discuss
the results for various sets of parameters, which are K,
Jeff = M2

s V 2
0 J , particle volume Vi and particle density,

which is varied by varying the length of the simulation
cell L.

4 Results and discussions

The studies depend strongly on the parameters which are
MS and K. For most of the simulation we work with the
reported values of the parameters for the γ − Fe2O3 fine
particle system which are (a) K is 0.046 × 105 J/m3 and
(b) MS = 4 × 105 A/m [22]. For the first set of simula-
tions we study a monodisperse system where the volume
of the particle is equivalent to that of a spherical particle
of diameter 10 nm. The exchange interaction is written as
a fraction of the average effective anisotropy energy for a
spherical particle of diameter 10 nm which is EA = KV0.

In Figure 1 we plot the hysteresis curves for the above
mentioned sample at a fixed value of Jeff which is approx-
imately 0.1EA at four different values of the particle con-
centration. The temperature is kept fixed at 5.0 K which is
much smaller than the expected blocking temperature of
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Fig. 2. The simulated hysteresis loops for K = 0.046 ×
105 J/m3, fixed particle concentration and a uniform particle
volume equivalent to a sphere of diameter 10 nm at a temper-
ature of 5 K for 4 different values of Jeff which are 0, 0.1EA,
0.2EA and 0.5EA.

the system. The system response is expected to be ferro-
magnetic for all the concentrations studied. With increas-
ing particle concentration, the following effects are noted:
(i) the magnetization at high fields becomes progressively
lower, in fact the relative magnetization at 0.05 T reduces
from 1.0 for the most dilute system (curve (a)) to 0.7
for the most concentrated system (curve (d)), (ii) the co-
ercively of the sample shows hardly any change, which
is expected, because below the blocking temperature the
coercivity depends only on the magnetic anisotropy and
(iii) the remanence decreases strongly with the increase of
particle density, since the effective demagnetization due to
dipolar interactions also increases. The different behaviors
obtained can only be due to the stronger dipolar interac-
tions because of larger concentrations.

In the next figure, Figure 2 we study the hysteresis
loop at a fixed particle concentration and a temperature of
5.0 K for four different strengths of the effective exchange
interaction. We observe that (i) for Jeff = 0, i.e. for a sys-
tem in which the exchange interactions are negligible the
magnetization and the remanence is smaller than for sys-
tems with a finite Jeff , (ii) for a finite value of Jeff , which
is less than the anisotropy field, the remanence is almost a
constant which seems to suggest that the remanence below
the blocking temperature depends mostly on the particle
concentration (iii) even for large values of the exchange
interaction the coercivity of the sample does not show
any remarkable change as it is mostly controlled by the
anisotropy constant and (iv) the magnetization increases
but the knee in the hysteresis curves appears earlier with
increasing Jeff .

In Figures 3a and 3b we investigate the temperature
changes in the hysteresis loop for a system with Jeff = 0
in Figure 3a and Jeff = 0.2EA in Figure 3b at the same
value of the particle concentration as in Figure 2. In Fig-
ure 3a we see a clear transition from ferromagnetic phase
at T = 5 K and 126 K to a superparamagnetic phase at

(a)

(b)

Fig. 3. The simulated hysteresis loops for K = 0.046 ×
105 J/m3, fixed particle concentration and a uniform particle
volume equivalent to a sphere of diameter 10 nm at different
temperatures for (a) Jeff = 0 at 5, 126 and 248 K and (b)
Jeff = 0.2EA at 5, 187 and 460 K.

248 K, with both the remanence and coercivity zero. Obvi-
ously for the monodisperse system the blocking tempera-
ture is between 126 and 248 K, in the absence of exchange
interactions. For finite Jeff in Figure 3b we find that
(i) the remanence is larger but the coercivity is smaller
than the corresponding values for Jeff = 0 (Fig. 3a) and
(ii) both the remanence and the coercivity decrease very
slowly with temperature and retains a finite value even
at very high temperatures, T = 460 K. Thus the super-
paramagnetic transition seems to take place at very high
temperatures in the presence of exchange interactions.

The role of the change in anisotropy energy on the
hysteresis was investigated and is shown in Figures 4a
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(a)

(b)

Fig. 4. The simulated hysteresis loops for Jeff = 0.2EA, fixed
particle concentration and a uniform particle volume equiva-
lent to a sphere of diameter 10 nm for (a) K = 0.015×105 J/m3

at 5 and 247 K and (b)K = 0.065×105 J/m3, at temperatures
5 and 460 K.

and 4b. The particle size and the particle concentration
remains the same as in Figures 2 and 3. In Figure 4a
we plot the hysteresis curve for a low value of K i.e.
K = 0.015 × 105 J/m3 (which is lower than the value
reported for the γ − Fe2O3 system), with Jeff = 0.2EA.
On comparing with Figure 2, we can see that both the re-
manence and the coercivity of the system at 5 K is much
less than that for a system with K = 0.046 × 105 J/m3.
The low field magnetization is also larger for the system
with lower anisotropy. Also for the same ratio of Jeff /EA

the system with a lower value of K seems to be super-
paramagnetic at 247 K (Fig. 4a) whereas the system with
higher K does not exhibit superparamagnetic behavior

(a)

(b)

Fig. 5. The simulated hysteresis loops for K = 0.046 ×
105 J/m3, Jeff = 0.2EA, and a fixed particle concentration
at 5 and 248 K for (a) uniform particle volume equivalent to
a sphere of diameter 7 nm and (b) uniform particle volume
equivalent to a sphere of diameter 13 nm.

even at 460 K as seen from Figure 3b. In Figure 4b the
value of K is 0.065×105 J/m3. This system is slow to sat-
urate, and has larger coercivity and remanence than the
system with lower K as seen from Figures 4a or 3b. Also
the system is not superparamagnetic even up to 460 K.

In Figures 5a and 5b we compare the hysteresis of
two monodisperse system where the particle volumes are
equivalent to spheres of diameters 7 nm and 13 nm re-
spectively, at 5 K and 248 K. The particle concentra-
tion is kept the same as in the earlier studies with K =
0.046 × 105 J/m3 and Jeff = 0.2EA. By comparing their
hysteresis curves at 5 K we see that the system with
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Fig. 6. The simulated hysteresis loops for K = 0.046 ×
105 J/m3, Jeff = 0.2EA, and a fixed particle concentration
at different temperatures (5 and 491 K) for a system of parti-
cles which have their sizes distributed in a Gaussian of width
t = 0.2 about a mean volume equivalent to a sphere of diameter
10 nm.

smaller sized particles shows a larger remanence. It is ex-
pected that the blocking temperature is lower for smaller
particle size and indeed we see from Figure 5a that this
system is superparamagnetic at 248 K, whereas the larger
sized particle (Fig. 5b) is not.

In Figure 6 we investigate a polydisperse system for
which the volumes of the spherical particles are picked
from a Gaussian distributed about a mean volume V0

which is that of a sphere of 10 nm diameter. The width
of the distribution is taken to be 0.2. The value of K =
0.046 × 105 J/m3 and Jeff = 0.2EA. The hysteresis loops
are plotted at two different temperatures. We find that
this system is not completely superparamagnetic even at
491 K. On comparing with Figure 3b which is exactly the
same as this system except than for 3b all the particles
have the same volume equivalent to the that of a sphere of
diameter 10 nm, we find that at 5 K the uniformly sized
system has larger remanence and coercivity. The super-
paramagnetic behavior of the array sets in only when the
blocking condition is satisfied for all the particles. Since
in a polydisperse systems the blocking temperature is dif-
ferent for different sized particles, the hysteresis loops still
retain their remanence and coercivity up to very high tem-
peratures.

For comparison we report the results of the ac suscep-
tibility measurements carried out on γ −Fe203 / polypyr-
role nanocomposites prepared by simultaneous gelation-
polymerization process for different concentrations of
pyrrole [14]. In Figure 7 we plot the thermal variation of
the ac susceptibility [19] at 16 Hz for (a) 5% and (b) 15%
pyrrole. Here the grain sizes were estimated to be in the
range 10 to 20 nm. In (a) χ′

ac increases up to 250 K after
which a tendency to decrease is observed, indicating that

Fig. 7. The variation of ac susceptibility with temperature for
the γ − Fe2O3 polypyrrole nanocomposite for (a) 5% and (b)
15% pyrrole.

the blocking temperature is ∼250 K. In (b), the nanocom-
posite with 15% pyrrole, there is a fairly sharp transition
to a superparamagnetic phase at ∼150 K. In the case of
the nanocomposite containing 5% of pyrrole the iron oxide
particles show a tendency to cluster, resulting in stronger
exchange interactions, whereas in the system with larger
pyrrole concentration the iron oxide particles are relatively
well separated, resulting in a lower blocking temperature.
This compares well with our simulation results.

Several other experimental results on blocking tem-
peratures indicate the effect of inter particle interactions.
Morup and Tronc [20] report the blocking temperature as
a function of the average particle volume obtained from
Mossbauer measurements. The blocking temperature was
found to be high (∼300 K) for particles even as small
as 800 nm3. This has been attributed to the strength of
the interaction between the particles. From ZFC-FC stud-
ies on RE-Fe based alloys, Wang et al. [10] report block-
ing temperatures varying in the range of 50 to ∼400 K
and compare it favorably with Monte Carlo simulations
on a cluster system with strong interactions and random
anisotropy.

5 Conclusions

The entire thrust in the area of magnetic nanomaterials
as in most other nanomaterials is driven by the possibility
of industrial application. However the existing techniques
like spin coating, sputtering, CVD etc. which are used for
preparing these materials, result in films having an inher-
ent disorder not only in terms of shape and size of the
magnetic grains but also in their spatial arrangement in
the array. In addition since most magnetic materials show
a tendency to agglomerate, short range exchange interac-
tions are also present in the system. The purpose of the
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simulation was to investigate in a systematic fashion the
role of various factors like particle concentration (which af-
fects both the dipolar interaction and the exchange) and
the particle size (which affects the anisotropy). Our Monte
Carlo studies show that the ferromagnetic signature per-
sists in the hysteresis loops up to very high temperatures
in the presence of exchange interactions. The results in-
dicate that the blocking temperatures can be very high
in the presence of large exchange and low dipolar interac-
tions, which would be favorable for recording media. This
implies that it is essential to tailor make materials with
well separated interacting magnetic single domains which
may not be possible by conventional methods like sol-gel,
sputtering, etc. Self assembling of these magnetic particles
using bio molecules have been suggested as an alternative
method of preparation.
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